This article was downloaded by:

On: 23 January 2011
Access details: Access Details: Free Access
Publisher Taylor \& Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 3741 Mortimer Street, London W1T 3JH, UK

Journal of Coordination Chemistry

Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title content=t713455674

THE PHENOMENON OF CONGLOMERATE CRYSTALLIZATION. PART 54. THE CRYSTALLIZATION MODES OF FIVE NEW COMPLEXES [TRANS-(3,2,3-TET) Co (III) $\left.X_{2}\right] Y, X=\mathrm{NO}_{2}^{-}, \mathrm{CN}^{-}, \mathrm{NCS}^{-}$
Riuwu Wen ${ }^{\text {a }}$; Salah S. Massoud ${ }^{\text {a }}$; Ivan Bernal ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Chemistry, University of Houston, Houston, TX

To cite this Article Wen, Riuwu, Massoud, Salah S. and Bernal, Ivan(2001) 'THE PHENOMENON OF CONGLOMERATE CRYSTALLIZATION. PART 54. THE CRYSTALLIZATION MODES OF FIVE NEW COMPLEXES [TRANS-(3,2,3TET) $\left.\mathrm{Co}(\mathrm{III}) X_{2}\right] Y, X=\mathrm{NO}_{2}^{-}, \mathrm{CN}^{-}, \mathrm{NCS}^{-1}$, Journal of Coordination Chemistry, 53: 3, $249-268$
To link to this Article: DOI: 10.1080/00958970108022909
URL: http://dx.doi.org/10.1080/00958970108022909

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf
This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

THE PHENOMENON OF CONGLOMERATE CRYSTALLIZATION. PART 54. THE CRYSTALLIZATION MODES OF FIVE NEW COMPLEXES [TRANS-(3,2,3-TET)Co(III) X_{2}] Y, $X=\mathrm{NO}_{2}^{-}, \mathrm{CN}^{-}, \mathrm{NCS}^{-}$

RIUWU WEN, SALAH S. MASSOUD and IVAN BERNAL*
Department of Chemistry, University of Houston, Houston, TX 77204-5641

(Received 25 April 2000; In final form 20 September 2000)

Abstract

A few complexes of formula [trans- $\left.\mathrm{Co}\left(\mathrm{N}_{4}\right) X_{2}\right] Y$, where $X=$ a monodentate ligand, $\mathrm{N}_{4}=$ a tetraamine ligand and $Y=$ a halide or oxy anion have been found to crystallize as conglomerates; however, the majority crystallize as racemates. The complexes are of such variety of composition and packing characteristics that it is difficult to ascertain why they crystallize in one form or the other. We decided to investigate a series of $\left[\right.$ trans $\left.-\mathrm{Co}\left(\mathrm{N}_{4}\right) X_{2}\right] Y$ compounds in which the amine was kept constant in order to limit the variables that affect the outcome.

Five different compounds of composition [trans- $\mathrm{Co}(3,2,3$-tet $\left.) X_{2}\right] Y$ (3,2,3-tet $=1,10$-diamino-4,7-diaza-decane, $X=\mathrm{NO}_{2}^{-}, \mathrm{CN}^{-}, \mathrm{SCN}^{-}$, and $Y=\mathrm{BF}_{4}^{-}, \mathrm{Cl}^{-}, \mathrm{Br}^{-}, \mathrm{I}^{-}$) were prepared and their crystallization behavior examined by determining their crystal structures. In all cases, when crystallized from deionized water at $21^{\circ} \mathrm{C}$, these substances are racemates. Suggestions regarding this crystallization mode are offered in the discussion.

Keywords: Crystal structure; Cobalt(III); Conglomerate crystallization; Tetraamine; Racemates; Cobalt amine derivatives; Cobalt cyanides; Cobalt thiocyanates

[^0]
INTRODUCTION

In earlier studies, we have shown [1-4] that a sizable group of cis-dinitro cobalt(III) and oxalato cobalt(III) compounds crystallize as conglomerates and provided persuasive evidence that the phenomenon is controlled by hydrogen bonds. We now wish to address the crystallization behavior of a series of trans compounds, as well as to introduce new ligands combined with some of the amines with which we succeeded in observing both racemic as well as conglomerate crystallization. We explored the Cambridge Structure Database to ascertain whether or not there were already cases of conglomerate crystallization of cobalt amine cyanides and cobalt amine thiocyanates. There are four examples of amine cyanides and thirteen amine thiocyanates of Co (III) which are genuine examples of conglomerate crystallization. Thus, we decided to explore those two series, using tetraamine ligands known from previous work to give trans geometries.

While [trans- $\left.\mathrm{Co}(\mathrm{en})_{2}\left(\mathrm{NO}_{2}\right)_{2}\right] X\left(X=\mathrm{I}^{-}, \mathrm{NO}_{3}^{-}, \mathrm{ClO}_{4}^{-}, \mathrm{NCS}^{-}\right)$and [trans$\left.\mathrm{Co}(\mathrm{en})_{2}\left(\mathrm{NO}_{2}\right)(\mathrm{NCS})\right] \mathrm{NCS}[4-7]$ crystallize as racemates, compounds [trans$\left.\mathrm{Co}(\mathrm{en})_{2}\left(\mathrm{NO}_{2}\right)(\mathrm{NCS})\right] X\left(X=\mathrm{I}^{-}, \mathrm{ClO}_{4}^{-}\right)$and $\left.[\text {trans-Co(en) })_{2}(\mathrm{ONO})(\mathrm{NCS})\right]$ $X\left(X=\mathrm{I}^{-}, \mathrm{ClO}_{4}^{-}\right)$all crystallize as conglomerates [8]. Further, for a series of $3,2,3$-tet amine compounds, we found that $\left[\right.$ trans $\left.-\mathrm{Co}(3,2,3-\mathrm{tet})\left(\mathrm{NO}_{2}\right)_{2}\right]$ $X\left(X=\mathrm{Br}^{-}, \mathrm{I}^{-}, \mathrm{Cl}^{-} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}, \mathrm{NO}_{3}^{-}, \mathrm{ClO}_{4}^{-}\right)[9-12]$ and $[$ trans- $\mathrm{Co}(3,2,3-$ tet $)$ $\left.\mathrm{Cl}_{2}\right] \mathrm{NO}_{3}$ [10, 13] crystallize as conglomerates. By contrast, [trans- $\mathrm{Ni}(3,2,3-$ tet $\left.)\left(\mathrm{NO}_{2}\right)_{2}\right][14]$ and [trans-Co(2,3,2-tet $)\left(\mathrm{NO}_{2}\right)_{2} \mathrm{NO}_{3}$ [15] crystallized as racemates. Thus far, we have not formed a clear explanation of the phenomenon of conglomerate crystallization of trans derivatives. To further investigate the conglomerate crystallization behavior of the trans-cobalt coordination compounds, single crystals of more trans 3,2,3-tet cobalt(III) compounds were obtained and their crystallization behavior are reported herein.

EXPERIMENTAL

Preparation of the Compounds

[Trans-Co(3,2,3-tet)($\left.\mathrm{NO}_{2}\right)_{2}$ IBF $_{4}$ (I)

To a water solution of $\left[\right.$ trans $-\mathrm{Co}(3,2,3-$ tet $\left.)\left(\mathrm{NO}_{2}\right)_{2}\right] \mathrm{Cl}$, which was prepared according to the literature method [10], was added an excess of a saturated water solution of NaBF_{4}. After several days of slow evaporation, crystals of the desired complex were obtained and filtered. Single crystals suitable for X-ray diffraction were obtained upon recrystallization from water.

[Trans-Co(3,2,3-tet)(CN) ${ }_{2}$ ICl $\cdot \mathrm{H}_{2} \mathrm{O}$ (II)

[trans $-\mathrm{Co}(3,2,3$-tet $\left.) \mathrm{Cl}_{2}\right] \mathrm{Cl} \cdot 3 / 2 \mathrm{H}_{2} \mathrm{O}(1.65 \mathrm{~g}, 0.05 \mathrm{~mol})$ prepared according to the literature method [16], was dissolved in water (100 mL) and the solution was heated on a water-bath for 15 min . Then, $\mathrm{NaCN}(0.50 \mathrm{~g}$, 0.1 mol) dissolved in 20 mL of water was added dropwise to the cobalt solution whereupon the color turns to yellowish-orange. The volume of the solution was reduced to $\sim 40 \mathrm{~mL}$ and left to crystallize at room temperature. After one week, the orange crystalline complex separated, was collected by filtration, washed with ethanol and air-dried. Single crystals suitable for X-ray diffraction were obtained by dissolving the

TABLE I Summary of data collection and processing parameters for compound I, [trans-Co(3,2,3-tet) $\left.\left(\mathrm{NO}_{2}\right)_{2}\right] \mathrm{BF}_{4}$

Compound I	
Space Group	P-1 (No. 2)
Cell Constants	$a=6.457$ (4) \AA
	$b=7.792$ (3) \AA
	$c=9.019(6) \AA$
	$\alpha=66.87(4)^{\circ}$
	$\beta=79.53(6)^{\circ}$
	$\gamma=81.75(4)^{\circ}$
Cell Volume (\AA^{3})	409.1(4)
Molecular Formula	CoBC ${ }_{8} \mathrm{~F}_{4} \mathrm{H}_{22} \mathrm{~N}_{6} \mathrm{O}_{4}$
Molecular Weight	412.03
F(000)	212.44
Z	1
Density ($\mathrm{Mg} \cdot \mathrm{m}^{-3}$)	1.673
Radiation Employed	$\mathbf{M o K} \alpha(0.70930 \AA)$
μ	$1.11 \mathrm{~mm}^{-1}$
$h(\min , \max)$	-89
$k(\min , \max)$	010
$l(\min , \max)$	-1112
Absorption Correction	Yes
Relative Transmission Coefficients	0.6369, 0.7751
Data Collection Range	4-60
Scan Width	$1.00+0.35 \tan \theta$
Total Data Collected	2516
Total Unique Data Collected	2516
Data Used in Refinement	897 (I > 3\%(I))
Merging R-value	0.000
RF	0.104
Rw	0.116
GoF	0.58
Max shift/sigma Ratio	0.010
Deepest Hole (e/ \mathbf{A}^{3})	-0.950
Highest Peak (e/ $\AA^{\mathbf{3}}$)	1.08
Weights Used	$\mathrm{W}=\sigma\left[\left(\mathrm{F}_{0}\right)\right]^{-2}$

$\mathrm{RF}=\Sigma(\mathrm{Fo}-\mathrm{Fc}) / \Sigma(\mathrm{Fo}), \quad \mathrm{Rw}=\left[\Sigma\left(\mathrm{w}(\mathrm{Fo}-\mathrm{Fc})^{*} 2\right) / \Sigma\left(\mathrm{wFo}^{*}{ }^{*}\right)\right]^{1 / 2}, \quad \mathrm{GoF}=[\Sigma(\mathrm{w}(\mathrm{Fo}-$ $\mathrm{Fc}^{*}{ }^{* *}$)/(No. of reflins-No. of params.) $]^{1 / 2}$.
complex in a minimum of water, followed by slow evaporation at ambient temperature.

[Trans-Co(3,2,3-tet)(CN) $\mathbf{2}^{\text {] }}$ [Br $\cdot \mathrm{H}_{2} \mathrm{O}$ (III)

[trans $\left.-\mathrm{Co}(3,2,3-\mathrm{tet}) \mathrm{Cl}_{2}\right] \mathrm{Cl} \cdot 3 / 2 \mathrm{H}_{2} \mathrm{O}(1.65 \mathrm{~g}, \quad 0.05 \mathrm{~mol})$ dissolved in water $(100 \mathrm{~mL})$ was heated on a water bath for 15 min , followed by addition of $\mathrm{NaCN}(0.50 \mathrm{gm}, 0.1 \mathrm{~mol})$ in 20 mL of water. To the resulting yellowishorange solution, 2 mL of a saturated solution of NaBr , was added. The volume of the solution was reduced to $\sim 60 \mathrm{~mL}$ and left to crystallize at room temperature. After several days orange single crystals were obtained. These were collected by filtration, washed with ethanol and air-dried.

TABLE II Summary of data collection and processing parameters for compounds II, $\left[\right.$ trans $-\mathrm{Co}(3,2,3-$ tet $\left.)(\mathrm{CN})_{2}\right] \mathrm{Cl} \cdot \mathrm{H}_{2} \mathrm{O}$ and III, $\left[\right.$ trans $-\mathrm{Co}(3,2,3$-tet $\left.)(\mathrm{CN})_{2}\right] \mathrm{Br}_{r} \cdot \mathrm{H}_{2} \mathrm{O}$

	Compound II	Compound III
Space Group	P2 ${ }_{1} / \mathrm{c}$	P21/c
Cell Constants	$a=8.244(2) \AA$	
	$\begin{aligned} & b=14.355(9) \AA \\ & c=13.292(7) \AA \end{aligned}$	$\begin{aligned} & b=14.528(10) \AA \\ & c=13.287(6) \AA \end{aligned}$
	$\beta=99.86(3)^{\circ}$	$\beta=99.67(4)^{\circ}$
Cell Volume (\AA^{3})	1549.8(13)	1558.1(14)
Molecular Formula	$\mathrm{CoC}_{10} \mathrm{ClH}_{24} \mathrm{~N}_{6} \mathrm{O}$	$\mathrm{CoBrC} \mathrm{c}_{0} \mathrm{H}_{24} \mathrm{~N}_{6} \mathrm{O}$
Molecular Weight	338.72	383.18
$\mathrm{F}(000)$	714.00	783.76
\boldsymbol{Z}	4	4
Density ($\mathrm{Mg} \cdot \mathrm{m}^{-3}$)	1.452	1.625
Radiation Employed	MoK α ($0.70930 \AA$)	$\operatorname{MoK} \alpha(0.70930 \AA)$
μ	$1.28 \mathrm{~mm}^{-1}$	$3.64 \mathrm{~mm}^{-1}$
$h(\min , \max)$	-1010	-1010
$\boldsymbol{k}($ min, $\max)$	011	018
$l($ min, max)	017	017
Absorption Correction	Yes	Yes
Relative Transmission	0.6354, 0.7500	0.2450, 0.4561
Coefficients		
Data Collection Range	4-55	4-55
Scan Width	$0.65+0.35 \tan \theta$	$0.95+0.35 \tan \theta$
Total Data Collected	2964	6124
Total Unique Data Collected	2860	3565
Data Used in Refinement	2067 (I > 3 3 (I))	1684 ($\mathrm{I}>4 \sigma(\mathrm{I})$)
Merging R-value	0.018	0.081
RF	0.034	0.086
Rw	0.039	0.112
GoF	0.45	1.34
Max shift/sigma Ratio	0.000	0.000
Deepest Hole (e $/ \AA^{3}$)	-0.440	-1.72
Highest Peak (e/ \AA^{3})	0.520	2.09
Weights Used	$\mathrm{W}=\sigma\left[\left(\mathrm{F}_{0}\right)\right]^{-2}$	$\mathrm{W}=\mathrm{\sigma}\left[\left(\mathrm{~F}_{0}\right)\right]^{-2}$

$\mathrm{RF}=\Sigma(\mathrm{Fo}-\mathrm{Fc}) / \Sigma(\mathrm{Fo}), \mathrm{Rw}=\left[\Sigma\left(\mathrm{w}(\mathrm{Fo}-\mathrm{Fc})^{* *} 2\right) / \Sigma\left(\mathrm{wFo} 0^{* * 2)}\right]^{1 / 2}, \mathrm{GoF}=\left[\Sigma\left(\mathrm{w}(\mathrm{Fo}-\mathrm{Fc})^{* *} 2\right) / \mathrm{No}\right.\right.$. of reflns No. of params.)] ${ }^{1 / 2}$.

[Trans-Co(3,2,3-tet)(NCS) ${ }_{2}$ ICl (IV)

[trans $-\mathrm{Co}(3,2,3$-tet $\left.) \mathrm{Cl}_{2}\right] \mathrm{Cl} \cdot 3 / 2 \mathrm{H}_{2} \mathrm{O}(1.65 \mathrm{~g}, 0.05 \mathrm{~mol})$ dissolved in water (100 mL) was heated on a water bath for 15 min , followed by addition of $\mathrm{NaSCN}(0.85 \mathrm{~g}, 0.1 \mathrm{~mol})$ in 20 mL of water. Upon addition of the thiocyanate solution, the color turns dark purple and, after a few minutes, a green precipitate formed which was filtered quickly and discarded. The dark purple filtrate was allowed to stand at room temperature and a brown precipitate, which separated out of this solution, was filtered. The product obtained was dissolved in hot water and crystallized from charcoal. After one week the reddish-brown crystals separated out were collected by filtration, washed with ethanol and air-dried.

TABLE III Summary of data collection and processing parameters for compounds IV, $\left[\right.$ trans $\left.-\mathrm{Co}(3,2,3-\mathrm{tet})(\mathrm{NCS})_{2}\right] \mathrm{Cl}$ and $\mathrm{V},\left[\right.$ trans $\left.-\mathrm{Co}(3,2,3-\mathrm{tet})(\mathrm{NCS})_{2}\right] \mathrm{I}$

	Compound IV	Compound V
Space Group	P2 1_{1} n	$\mathbf{P} 2_{1} / \mathbf{n}$
Cell Constants	$a=11.030(18) \AA$	$a=11.085(7) \AA$
	$b=13.224(12) \AA$	$b=13.286(6) \AA$
	$c=13.35(3) A$	$c=12.293(10) \AA$
	$\beta=98.33(17)^{\circ}$	$\beta=97.51(6)^{\circ}$
Cell Volume ($\AA^{\mathbf{3}}$)	1782(6)	1795.1(20)
Molecular Formula	$\mathrm{CoC}_{10} \mathrm{ClH}_{22} \mathrm{~N}_{6} \mathrm{~S}_{2}$	$\mathrm{CoC}_{10} \mathrm{H}_{22} \mathrm{IN}_{6} \mathrm{~S}_{2}$
Molecular Weight	384.83	476.28
F(000)	802.86	943.55
Z	4	4
Density ($\mathrm{Mg} \cdot \mathrm{m}^{-3}$)	1.434	1.762
Radiation Employed	$\operatorname{MoK} \alpha(0.70930 \AA)$	$\mathrm{MoK} \alpha(0.70930 \AA)$
μ	$1.34 \mathrm{~mm}^{-1}$	$2.88 \mathrm{~mm}^{-1}$
$h(\min , \max)$	-1312	-1313
$k($ min, max $)$	0, 15	015
$l(\min , \max)$	0,14	014
Absorption Correction	No	Yes
Relative Transmission Coefficients	N/A	0.3396, 0.5277
Data Collection Range	4-50	4-50
Scan Width	$0.75+0.35 \tan \theta$	$1.00+0.35 \tan \theta$
Total Data Collected	3308	3383
Total Unique Data Collected	3136	3182
Data Used in Refinement	739 ($\mathrm{I}>2.5 \sigma(\mathrm{I})$)	893 (I > 4 $\sigma(\mathrm{I})$)
Merging R-value	0.263	0.133
RF	0.175	0.051
Rw	0.202	0.058
GoF	0.65	0.35
Max shift/sigma Ratio	0.504	0.001
Deepest Hole (e/ \AA^{3})	-1.46	-0.940
Highest Peak (e/ \AA^{3})	1.99	0.830
Weights Used	$\mathrm{W}=\sigma\left[\left(\mathrm{F}_{0}\right)\right]^{-2}$	$\mathrm{W}=\sigma\left[\left(\mathrm{F}_{0}\right)\right]^{-2}$

$\mathrm{RF}=\Sigma(\mathrm{Fo}-\mathrm{Fc}) / \Sigma(\mathrm{Fo}), \mathrm{Rw}=\left[\Sigma\left(\mathrm{w}(\mathrm{Fo}-\mathrm{Fc})^{* *} 2\right) / \Sigma\left(\mathrm{wFo}{ }^{* *} 2\right)\right]^{1 / 2}, \mathrm{GoF}=\left[\Sigma\left(\mathrm{w}(\mathrm{Fo}-\mathrm{Fc})^{* *} 2\right) /(\mathrm{No}\right.$. of reflnsNo. of params.) $]^{1 / 2}$.

[Trans-Co(3,2,3-tet)(NCS) ${ }_{2}$ II (V)

This compound was prepared as described for the corresponding chloride complex (IV) except for the addition of a saturated solution of NaI to the

TABLE IV Atomic parameters x, y, z and Biso for compound I, [trans-Co(3,2,3-tet)$\left.\left(\mathrm{NO}_{2}\right)_{3}\right] B F_{4}$ E.S.Ds. refer to the last digit printed

	x	y	z	Biso
Co	0.08000	0.21000	0.69000	2.77 (17)
N1	0.033 (5)	0.055 (5)	0.905 (4)	3.9 (8)
N2	-0.140 (3)	0.403 (4)	0.717 (3)	1.0 (4)
N3	0.137 (4)	0.368 (4)	0.436 (3)	2.1 (6)
N4	0.300 (8)	-0.007 (8)	0.681 (7)	7.6 (14)
N5	0.308 (8)	0.358 (8)	0.731 (7)	8.6 (14)
N6	-0.134 (3)	0.091 (3)	0.656 (3)	1.0 (4)
O1	0.389 (10)	0.231 (8)	0.821 (8)	8.3 (17)
02	0.282 (4)	0.522 (4)	0.660 (4)	5.4 (7)
O3	-0.182 (5)	-0.061 (4)	0.743 (4)	5.9 (7)
04	-0.271 (6)	0.170 (5)	0.561 (4)	5.2 (8)
C1	-0.025 (8)	0.161 (7)	1.042 (6)	5.8 (12)
C2	-0.220 (5)	0.311 (5)	0.995 (4)	2.5 (6)
C3	-0.161 (7)	0.465 (6)	0.838 (5)	4.4 (10)
C4	-0.109 (5)	0.566 (5)	0.561 (5)	4.9 (8)
C5	-0.047 (5)	0.510 (5)	0.431 (4)	4.5 (7)
C6	0.173 (6)	0.305 (6)	0.329 (5)	2.9 (8)
C7	0.352 (6)	0.166 (6)	0.340 (5)	4.3 (9)
C8	0.334 (7)	-0.021 (6)	0.498 (6)	4.5 (10)
H12	-0.173	0.458	0.415	5.2
H13	-0.014	0.626	0.329	5.2
H1	0.168	-0.023	0.940	3.3
H2	-0.068	-0.030	0.929	3.3
H3	0.085	0.261	1.005	6.1
H4	-0.052	0.093	1.141	6.1
H5	-0.283	0.346	1.088	2.0
H6	-0.341	0.241	0.977	2.0
H7	-0.271	0.568	0.834	5.4
H8	-0.024	0.498	0.860	5.4
H9	-0.274	0.350	0.720	1.7
H10	-0.240	0.652	0.555	6.3
H11	0.008	0.638	0.575	6.3
H14	0.262	0.436	0.431	3.0
H15	0.050	0.255	0.306	2.1
H16	0.216	0.415	0.203	2.1
H17	0.368	0.116	0.233	4.7
H18	0.492	0.216	0.316	4.7
H19	0.471	-0.111	0.489	10.4
H20	0.214	-0.089	0.499	10.4
H21	0.255	-0.127	0.771	8.9
H22	0.441	0.017	0.705	8.9
F1	-0.506 (5)	0.599 (5)	0.296 (4)	10.2 (10)
F2	-0.367 (3)	0.871 (3)	0.134 (3)	5.6 (5)
F3	-0.259 (5)	0.695 (4)	0.368 (4)	10.1 (8)
F4	-0.191 (6)	0.604 (5)	0.156 (4)	12.5 (10)
B	-0.335 (6)	0.709 (7)	0.233 (6)	4.8 (8)

[^1]purple product. Brown-red needles were obtained by crystallizing the crude brown precipitate from hot water containing 0.5 g of activated charcoal.

Elemental analyses were not determined since the structure and the elemental analyses of the starting material [trans- $\mathrm{Co}(3,2,3-$ tet $\left.) \mathrm{Cl}_{2}\right] \mathrm{Cl} \cdot 3 /$ $2 \mathrm{H}_{2} \mathrm{O}$ was known [10].

TABLE V Atomic parameters x, y, z and Biso for compound II, [trans-Co(3,2,3-tet)$\left.(\mathrm{CN})_{2}\right] \mathrm{Cl} \cdot \mathrm{H}_{2} \mathrm{O}$ E.S.Ds. refer to the last digit printed

	x	y	z	Biso
Co	0.90045 (6)	0.24357 (4)	0.11703 (3)	1.550 (21)
N1	0.8565 (5)	0.3721 (3)	0.0642 (3)	2.60 (19)
N2	0.6976 (4)	0.2007 (3)	0.02505 (24)	2.18 (15)
N3	0.9355 (4)	0.1108 (3)	0.15801 (24)	2.33 (16)
N4	1.0992 (4)	0.2837 (3)	0.2138 (3)	2.26 (16)
N5	0.7082 (5)	0.2814 (3)	0.2921 (3)	3.30 (17)
N6	1.1035 (5)	0.2132 (3)	-0.0542 (3)	3.63 (20)
Cl	0.6898 (7)	0.4124 (4)	0.0586 (4)	3.31 (23)
C2	0.5646 (6)	0.3567 (4)	-0.0144 (4)	3.64 (23)
C3	0.5448 (5)	0.2577 (4)	0.0199 (3)	3.32 (22)
C4	0.6661 (6)	0.1031 (4)	0.0541 (4)	3.21 (22)
C5	0.8286 (6)	0.0542 (4)	0.0782 (4)	3.23 (23)
C6	1.1053 (6)	0.0727 (4)	0.1783 (4)	3.07 (22)
C7	1.2166 (6)	0.1272 (4)	0.2603 (4)	3.51 (22)
C8	1.2503 (5)	0.2248 (4)	0.2273 (3)	3.08 (22)
C9	0.7757 (5)	0.2649 (3)	0.2258 (3)	2.16 (16)
C10	1.0297 (5)	0.2243 (3)	0.0097 (3)	2.28 (18)
H1	0.913 (4)	0.408 (3)	0.096 (3)	0.7 (8)
H2	0.884 (6)	0.373 (4)	-0.006 (4)	5.5 (14)
H3	0.652 (5)	0.415 (3)	0.136 (3)	2.9 (10)
H4	0.688 (6)	0.468 (4)	0.033 (4)	4.1 (13)
H5	0.463 (6)	0.390 (4)	-0.018 (4)	4.5 (12)
H6	0.595 (6)	0.366 (3)	-0.091 (4)	4.1 (11)
H7	0.516 (5)	0.256 (3)	0.096 (3)	2.6 (9)
H8	0.442 (7)	0.224 (4)	-0.018 (4)	5.4 (14)
H9	0.721 (5)	0.200 (3)	-0.040 (3)	3.4 (11)
H10	0.604 (5)	0.109 (3)	0.121 (3)	2.9 (9)
H11	0.577 (7)	0.073 (4)	0.001 (4)	6.3 (15)
H12	0.888 (6)	0.047 (3)	0.019 (4)	4.2 (12)
H13	0.822 (6)	-0.011 (4)	0.111 (4)	4.3 (12)
H14	0.894 (5)	0.100 (3)	0.218 (3)	2.6 (9)
H15	1.165 (6)	0.079 (4)	0.111 (4)	5.0 (13)
H16	1.102 (6)	0.011 (4)	0.206 (4)	3.5 (11)
H17	1.318 (6)	0.095 (3)	0.279 (3)	2.8 (9)
H18	1.171 (6)	0.125 (4)	0.322 (4)	4.9 (13)
H19	1.340 (5)	0.256 (3)	0.283 (3)	3.9 (11)
H20	1.309 (9)	0.218 (5)	0.145 (6)	10.8 (22)
H21	1.122 (6)	0.340 (4)	0.197 (4)	3.1 (12)
H22	1.061 (6)	0.292 (4)	0.272 (4)	4.7 (13)
O1W	0.4873 (7)	-0.0470 (4)	0.1882 (4)	6.3 (3)
H23	0.597 (14)	-0.048 (8)	0.211 (8)	15.1 (42)
H24	0.467 (13)	-0.103 (8)	0.190 (8)	14.0 (44)
Cl	0.82138 (15)	0.00098 (9)	0.34383 (8)	3.41 (5)

[^2]TABLE VI Atomic parameters x, y, z and Biso for compound III, [trans-Co(3,2,3-tet)$\left.(\mathrm{CN})_{2}\right] \mathrm{Br} \cdot \mathrm{H}_{2} \mathrm{O}$ E.S.Ds. refer to the last digit printed

	x	y	z	Biso
Co	0.3953 (3)	0.24069 (16)	0.12170 (13)	1.52 (8)
N1	0.3489 (18)	0.3684 (10)	0.0732 (9)	2.4 (6)
N2	0.1891 (18)	0.1991 (11)	0.0303 (9)	2.4 (6)
N3	0.4326 (18)	0.1109 (10)	0.1587 (9)	2.4 (6)
N4	0.5969 (17)	0.2801 (10)	0.2184 (9)	2.3 (6)
N5	0.5988 (19)	0.2118 (14)	-0.0501 (10)	3.9 (9)
N6	0.2016 (20)	0.2754 (13)	0.2988 (10)	3.7 (8)
C1	0.186 (3)	0.4080 (15)	0.0677 (13)	3.7 (10)
C2	0.0544 (23)	0.3527 (16)	-0.0023 (13)	3.5 (9)
C3	0.0387 (21)	0.2541 (18)	0.0273 (12)	3.5 (9)
C4	0.1607 (25)	0.1028 (15)	0.0560 (13)	3.2 (9)
C5	0.322 (3)	0.0557 (13)	0.0801 (12)	3.1 (9)
C6	0.5984 (25)	0.0719 (14)	0.1782 (13)	3.2 (8)
C7	0.715 (3)	0.1261 (17)	0.2612 (13)	3.8 (9)
C8	0.7452 (23)	0.2212 (16)	0.2314 (12)	3.2 (9)
C9	0.5241 (21)	0.2232 (13)	0.0148 (11)	2.4 (8)
C10	0.2705 (21)	0.2608 (13)	0.2319 (10)	2.3 (7)
H1	0.372	0.370	0.006	3.2
H2	0.423	0.406	0.117	3.2
H3	0.155	0.411	0.138	4.4
H4	0.188	0.474	0.041	4.4
H5	0.084	0.353	-0.074	4.7
H6	-0.057	0.383	-0.006	4.7
H7	0.008	0.256	0.097	4.1
H8	-0.054	0.227	-0.022	4.1
H10	0.103	0.101	0.117	3.5
H11	0.088	0.072	-0.003	3.5
H12	0.308	-0.008	0.106	3.7
H13	0.373	0.051	0.016	3.7
H14	0.390	0.106	0.222	3.1
H15	0.591	0.005	0.200	4.1
H16	0.646	0.071	0.112	4.1
H17	0.664	0.130	0.325	4.5
H18	0.826	0.095	0.279	4.5
H19	0.790	0.219	0.166	4.1
H20	0.833	0.249	0.286	4.1
H21	0.566	0.289	0.284	3.2
H22	0.630	0.340	0.195	3.2
Br	0.6975 (3)	0.49524 (19)	0.15130 (16)	5.10 (12)
0	0.0266 (25)	0.4470 (15)	0.3170 (12)	7.3 (11)
H9	0.224	0.201	-0.045	3.2

Biso is the mean of the principal axes of the thermal ellipsoid.

X-ray Crystallography

For all five compounds, data were collected with an Enraf-Nonius CAD-4 diffractometer. The procedure used for crystal alignment, cell constant determination, space group determination and data collection were uniform for all five crystals.

A crystal of compound I was centered with data in the $4^{\circ} \leq 2 \theta \leq 60^{\circ}$ range, compounds II and III in the $4^{\circ} \leq 2 \theta \leq 55^{\circ}$ range, and compounds IV and V in $4^{\circ} \leq 2 \theta \leq 50^{\circ}$ range. Examination of the cell constants, absences, and Niggli matrix [16] clearly showed compound I to crystallize in a triclinic lattice whose systematic absences indicate it belongs in

TABLE VII Atomic parameters x, y, z and Biso for compound IV, [trans-Co(3,2,3-tet)$\left.(\mathrm{NCS})_{2}\right] \mathrm{Cl}$ E.S.Ds. refer to the last digit printed

	x	y	z	Biso
Co	0.5587 (9)	0.2771 (6)	0.1835 (5)	1.8 (4)
S1	0.655 (3)	0.3622 (19)	0.5509 (13)	7.5 (16)
S2	0.4963 (18)	0.2013 (13)	-0.1857 (11)	4.1 (10)
N1	0.704 (5)	0.302 (3)	0.137 (3)	2.3 (9)
N2	0.610 (4)	0.133 (3)	0.213 (3)	0.5 (7)
N3	0.410 (5)	0.248 (3)	0.235 (3)	2.5 (10)
N4	0.499 (6)	0.422 (4)	0.161 (4)	4.7 (14)
N5	0.637 (6)	0.309 (4)	0.331 (4)	4.5 (13)
N6	0.454 (8)	0.250 (5)	0.035 (6)	9.2 (22)
C1	0.785 (8)	0.238 (6)	0.084 (6)	6.1 (20)
C2	0.785 (8)	0.132 (6)	0.123 (6)	5.0 (17)
C3	0.677 (8)	0.080 (5)	0.141 (6)	4.8 (17)
C4	0.500 (6)	0.084 (4)	0.227 (4)	2.6 (12)
C5	0.411 (7)	0.147 (5)	0.287 (5)	4.9 (17)
C6	0.327 (6)	0.316 (4)	0.286 (4)	2.0 (11)
C7	0.319 (7)	0.417 (5)	0.239 (5)	3.9 (15)
C8	0.416 (6)	0.470 (4)	0.217 (4)	2.4 (12)
C9	0.648 (6)	0.335 (4)	0.425 (4)	1.9 (11)
C10	0.458 (9)	0.230 (7)	-0.061 (7)	7.3 (24)
H1	0.753	0.329	0.202	3.0
H2	0.685	0.357	0.087	3.0
H3	0.882	0.265	0.109	6.9
H4	0.777	0.243	0.004	6.9
H5	0.840	0.127	0.195	5.4
H6	0.821	0.089	0.068	5.4
H7	0.699	0.008	0.175	5.7
H8	0.621	0.065	0.070	5.7
H9	0.661	0.136	0.283	1.5
H10	0.453	0.066	0.153	3.6
H11	0.517	0.019	0.270	3.6
H12	0.449	0.151	0.367	5.9
H13	0.331	0.113	0.281	5.9
H14	0.356	0.234	0.166	3.5
H15	0.242	0.284	0.279	3.4
H16	0.359	0.319	0.367	3.4
H17	0.276	0.463	0.293	4.5
H18	0.258	0.416	0.169	4.5
H19	0.385	0.534	0.175	3.7
H20	0.461	0.494	0.291	3.7
H21	0.469	0.429	0.085	5.3
H22	0.574	0.464	0.173	5.3
Cl	0.7723 (19)	0.0425 (14)	0.4354 (12)	4.8 (11)

[^3]space group P1 (No. 1) or P-1 (No. 2). Compounds II and III crystallize in a primitive monoclinic lattice whose systematic absences indicate both belong in space group $\mathrm{P} 2_{1} / \mathrm{c}$ (No. 14), and compounds IV and V , crystallize in a monoclinic lattice whose systematic absences belong to $\mathbf{P} 2_{1} / \mathbf{n}$ (No.14).

TABLE VIII Atomic parameters x, y, z and Biso for compound \mathbf{V}, [trans- $\mathrm{Co}(3,2,3$-tet)$\left.(\mathrm{NCS})_{2}\right] I$ E.S.Ds. refer to the last digit printed

	x	y	z	Biso
Co	0.4495 (3)	0.2547 (3)	0.80079 (23)	1.83 (14)
N1	0.4944 (17)	0.3962 (16)	0.8262 (15)	2.7 (10)
N2	0.6108 (16)	0.2254 (16)	0.7571 (14)	2.5 (10)
N3	0.4186 (18)	0.1097 (16)	0.7827 (14)	3.2 (11)
N4	0.2859 (16)	0.2787 (15)	0.8364 (13)	2.9 (10)
N5	0.5070 (17)	0.2299 (17)	0.9503 (17)	3.2 (11)
N6	0.3903 (16)	0.2811 (15)	0.6529 (15)	2.6 (11)
C1	0.561 (3)	0.4511 (18)	0.7485 (22)	3.8 (14)
C2	0.6756 (24)	0.4022 (23)	0.7310 (21)	3.8 (15)
C3	0.6672 (21)	0.2963 (25)	0.6889 (18)	4.0 (16)
C4	0.6031 (21)	0.1251 (24)	0.7097 (21)	3.8 (15)
C5	0.533 (3)	0.0608 (24)	0.7731 (24)	5.2 (16)
C6	0.346 (3)	0.0586 (21)	0.8587 (20)	4.1 (14)
C7	0.225 (3)	0.1039 (22)	0.8626 (20)	4.1 (14)
C8	0.2282 (22)	0.2108 (21)	0.9067 (19)	3.5 (13)
C9	0.5144 (19)	0.2297 (18)	1.0463 (25)	2.7 (12)
C10	0.3751 (21)	0.3062 (20)	0.5641 (23)	3.5 (13)
S1	0.5107 (6)	0.2273 (7)	1.1763 (5)	4.0 (4)
S2	0.3576 (7)	0.3466 (7)	0.4375 (6)	6.1 (5)
H1	0.544	0.400	0.896	3.7
H2	0.420	0.433	0.833	3.7
H3	0.507	0.456	0.674	4.3
H4	0.577	0.524	0.774	4.3
H5	0.733	0.401	0.803	3.3
H6	0.721	0.444	0.678	3.3
H7	0.749	0.273	0.677	4.5
H8	0.613	0.301	0.616	4.5
H9	0.663	0.222	0.827	3.5
H10	0.689	0.094	0.711	4.3
H11	0.565	0.127	0.631	4.3
H12	0.578	0.045	0.847	5.4
H13	0.517	-0.009	0.734	5.4
H14	0.370	0.105	0.712	4.0
H15	0.390	0.062	0.934	4.6
H16	0.336	-0.015	0.837	4.6
H17	0.180	0.101	0.784	5.4
H18	0.178	0.056	0.907	5.4
H19	0.277	0.212	0.983	4.4
H20	0.144	0.236	0.914	4.4
H21	0.233	0.280	0.769	3.5
H22	0.286	0.344	0.869	3.5
I	0.74468 (17)	0.48392 (16)	1.03874 (14)	4.09 (9)

[^4]Data were corrected for absorption using empirical curves derived from Psi scans of suitable reflections. The scattering curves were taken from Cromer and Waber's compilation [17].

Processing of the data was carried out with the PC version of the NRCVAX package [18]. The cobalt atoms were found using direct methods. After refining the scale factor and the positional parameters of the Co atoms, a difference Fourier map produced many of the non-hydrogen atoms in all five cases. The remaining atoms were found in subsequent difference maps. The positions and anisotropic thermal parameters of heavy atoms, including the waters of crystallization were refined. For compound II, all hydrogen atoms including the hydrogens of the water molecules were found experimentally in a difference map and used for least squares calculations. For the other four compounds, the hydrogen atoms were added to ideal positions and used for least squares calculations. The details of data collection for compound I are summarized in Table 1. The details of data collection for compounds II and III are summarized on Table II. The corresponding data for compounds IV and \mathbf{V} are listed on Table III. Fractional coordinates for compounds I through \mathbf{V} are given in Tables IV through VIII.

RESULTS

The successful solution of the single crystal structure shows that compound I crystallizes in centrosymmetric space group P-1 (No. 2). There is one [trans $-\mathrm{Co}(3,2,3-$ tet $\left.)\left(\mathrm{NO}_{2}\right)_{2}\right]^{+}$cation and one BF_{4}^{-}anion in the asymmetric unit (Fig. 1). The cobalt(III) is coordinated by four nitrogens of the 3,2,3-tet amine ligand, and two nitrite ligands bonded to the central cobalt atom through their nitrogens in a trans configuration. The two six-membered rings are in the classical chair conformation. Selected bond lengths and bond angles are listed in Table IX.

Compounds II, [trans- $\left.\mathrm{Co}(3,2,3-\mathrm{tet})(\mathrm{CN})_{2}\right] \mathrm{Cl} \cdot \mathrm{H}_{2} \mathrm{O}$, and III, [trans-$\mathrm{Co}(3,2,3-$ tet $\left.)-(\mathrm{CN})_{2}\right] \mathrm{Br} \cdot \mathrm{H}_{2} \mathrm{O}$ both crystallize as racemates in monoclinic lattices. These compounds are isomorphous and isostructural and crystallize in space group $\mathrm{P}_{2} / \mathrm{c}$. In both complex cations, the central cobalt ions are in an octahedral coordination environment, and coordinated by four nitrogens of the $3,2,3-$ tet amine ligand. The two CN^{-}ligands are bound to the central cobalt atom through carbon in a trans configurations (Figs. 2 and 3). Tables X and XI list selected bond lengths and bond angles.

FIGURE 1 Molecular structure of compound $\mathrm{I},\left[\right.$ trans $\left.-\mathrm{Co}(\mathbf{3}, 2,3-\operatorname{tet})\left(\mathrm{NO}_{2}\right)_{2}\right] \mathrm{BF}_{4}$.

Compounds IV and V, [trans-Co(3,2,3-tet)(NCS) $\left.)_{2}\right] \mathrm{Cl}$ and [trans-$\mathrm{Co}(3,2,3$-tet $)$-(NCS) $)_{2} \mathrm{JI}$ crystallize in monoclinic lattices whose space groups are $\mathrm{P}_{1} / \mathrm{n}$, and are isomorphous and isostructural. The two trans NCS^{-} ligands are N -bound. The molecular structures for these compounds are illustrated in Figures 4 and 5, with conformations of the 3,2,3-tet amine ligand the same as in compounds I, II and III with two six-membered rings in chair conformations and with a pseudo two-fold axis. Selected bond lengths and bond angles for compounds IV and \mathbf{V} are shown in Tables XII and XIII, respectively.

DISCUSSION

Symmetrically substituted, trans-compounds such as $\left[\right.$ trans $-\mathrm{Co}(\mathrm{en})_{2}$ $\left.\left(\mathrm{NO}_{2}\right)_{2}\right] X\left(X=\mathrm{Cl}^{-} \mathrm{I}^{-}\right.$and NCS^{-}and $\left.\mathrm{ClO}_{4}^{-}\right)$, [trans-Co(en) $\left.)_{2}\left(\mathrm{NO}_{2}\right)_{2}\right]$

TABLE IX Selected bond lengths and bond angles for compound I, [trans-Co(3,2,3-tet)$\left.\left(\mathrm{NO}_{2}\right)_{2}\right] \mathrm{BF}_{4}$

$\mathrm{Co}-\mathrm{N} 1$	1.83 (4)	N5-O2	1.19 (7)
$\mathrm{Co}-\mathrm{N} 2$	1.974 (24)	N6-O3	1.19 (4)
$\mathrm{Co}-\mathrm{N} 3$	2.13 (3)	N6-04	1.27 (4)
$\mathrm{Co}-\mathrm{N} 4$	2.06 (5)	C1--C2	1.58 (6)
Co-N5	2.16 (5)	C2-C3	1.48 (6)
$\mathrm{Co}-\mathrm{N} 6$	1.899 (22)	C4-C5	1.39 (5)
$\mathrm{N} 1-\mathrm{Cl}$	1.70 (6)	C6-C7	1.46 (6)
N2-C3	1.33 (5)	C7-C8	1.59 (6)
N2-C4	1.48 (5)	F1-B	1.39 (5)
N3-C5	1.50 (4)	F2-B	1.24 (5)
N3-C6	1.21 (5)	F3-B	1.35 (6)
N4-C8	1.67 (7)	F4-B	1.42 (6)
N5-O1	1.13 (9)		
$\mathrm{N} 1-\mathrm{Co}-\mathrm{N} 2$	93.3 (13)	C5-N3-C6	118 (3)
$\mathrm{N} 1-\mathrm{Co}-\mathrm{N} 3$	174.8 (13)	$\mathrm{Co}-\mathrm{N} 4-\mathrm{C} 8$	110 (3)
$\mathrm{N} 1-\mathrm{Co}-\mathrm{N} 4$	81.8 (19)	$\mathrm{O} 1-\mathrm{N} 5-\mathrm{O} 2$	151 (6)
N1-Co--N6	86.8 (13)	Co--N6-O3	123.6 (22)
N2-Co-N3	90.5 (11)	$\mathrm{Co}-\mathrm{N} 6-\mathrm{O} 4$	126.1 (22)
$\mathrm{N} 2-\mathrm{Co}-\mathrm{N} 4$	175.1 (17)	O3-N6-O4	109 (3)
N2-Co-N6	88.1 (10)	$\mathrm{N} 1-\mathrm{Cl}-\mathrm{C} 2$	108 (3)
N3-Co-N4	94.2 (17)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	110 (3)
$\mathrm{N} 3-\mathrm{Co}-\mathrm{N} 6$	89.9 (10)	N2-C3-C2	109 (3)
N4-Co-N6	90.7 (17)	N2-C4-C5	111 (3)
$\mathrm{Co}-\mathrm{N} 1-\mathrm{Cl}$	116 (3)	C5-C4-F3	62.8 (23)
$\mathrm{Co}-\mathrm{N} 2-\mathrm{C} 3$	123.7 (24)	N3-C5-C4	119 (3)
$\mathrm{Co}-\mathrm{N} 2-\mathrm{C} 4$	104.3 (19)	N3-C6-C7	116 (3)
$\mathrm{C} 3-\mathrm{N} 2-\mathrm{C} 4$	107 (3)	C6-C7-C8	115 (3)
$\mathrm{Co}-\mathrm{N} 3-\mathrm{C} 5$	96.3 (20)	N4-C8-C7	118 (4)
$\mathrm{Co}-\mathrm{N} 3-\mathrm{C} 6$	126 (3)		

[trans- $\left.\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Co}\left(\mathrm{NO}_{2}\right)_{2}(\mathrm{ox})\right]$ crystallize as racemates and the cations are chiral; but, internally compensated, inasmuch as the two five-membered rings are conformed either as $\delta \lambda$ or $\lambda \delta$.

In the case of conglomerates of species containing a trans pair of en ligands, such as in [trans-Co(en) $\left.{ }_{2}\left(\mathrm{NO}_{2}\right)(\mathrm{NCS})\right] X$ and $\left[\right.$ trans $-\mathrm{Co}(\mathrm{en})_{2}$ (ONO)(NCS) $] X$ where $X=\mathrm{I}^{-}$and ClO_{4}^{-}, it has been found that the two en rings are in $\delta \delta$ or $\lambda \lambda$ pairs; that is, they behave as if they are in an enantiomorphic environment and acquire conformations which render the en rings homochiral. The species in question lie at a general position of the space group $\mathrm{P} 2_{1}$ in which neither the symmetry requirements nor the cell contents impose symmetry conditions on the species in question.

Thus the en rings, in theory, acquire conformations attuned to their environment. They select to be in $\delta \delta$ or $\lambda \lambda$ pairs when in an enantiomorphic medium and in a $\delta \lambda$ or $\lambda \delta$ pair when in a centrosymmetric environment, even when located at general positions of the space group [19-22]. Therefore, it is clear that the conformation of en rings is acutely sensitive to

FIGURE 2 Molecular structure of compound II, $\left[\right.$ trans $\left.-\mathrm{Co}(3,2,3-\mathrm{tet})(\mathrm{CN})_{2}\right] \mathrm{Cl}$.
the enantiomorphic or centrosymmetric properties of the lattice; and, while in most cases of enantiomorphic lattices the en rings are either $\Lambda(\delta \delta)$ or $\Delta(\lambda \lambda)$ in the case of $\left[\right.$ cis- $\left.\mathrm{Co}(\mathrm{en})_{2}\left(\mathrm{NO}_{2}\right)_{2}\right]\left[\right.$ trans $\left.-\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{2}\left(\mathrm{NO}_{2}\right)_{4}\right][20]$ and in [cis- $\left.\mathrm{Ru}(\mathrm{en})_{2}\left(\mathrm{NO}_{2}\right)_{2}\right] \mathrm{Cl}[21]$, they are $\Lambda(\delta \lambda)$ or $\Delta(\lambda \delta)$ due to the fact that one ring is coerced to be $o b$ by intramolecular hydrogen bonds [20,21].

For the series of $3,2,3$-tet compounds, $\left[\right.$ trans $\left.-\mathrm{Co}(3,2,3-\operatorname{tet})\left(\mathrm{NO}_{2}\right)_{2}\right] X$ and [trans $-\mathrm{Co}(3,2,3$-tet $\left.) \mathrm{Cl}_{2}\right] \mathrm{NO}_{3}$, the secondary nitrogens become chiral upon complexation, which must be of the same chirality in order for the secondary hydrogen to be at the structurally favorable axial positions. The crystal structural studies show that all the above compounds crystallize as conglomerates with ordered and conformationally chiral five- membered rings. Would this trend continue to be true regardless of the identity of the

FIGURE 3 Molecular structure of compound III, $\left[\right.$ trans $\left.-\mathrm{Co}(3,2,3-\mathrm{tet})(\mathrm{CN})_{2}\right] \mathrm{Br}$.
counter anion since the counter anion plays a very important role in the conglomerate crystallization of the cis compound? [1-3].

Two polymorphs of $\left[\right.$ trans $-\mathrm{Co}(2,3,2-$ tet $\left.)\left(\mathrm{NO}_{2}\right)_{2}\right] \mathrm{NO}_{3}$ were obtained and their crystal structures were determined [23]. Their crystallization pathway is important because they have a pair of five-membered rings on opposite sites of the basal plane analogous to trans-bis(ethylenediamine)cobalt(III) cations. Models show that the secondary nitrogens should be a heterochiral pair, while those of $3,2,3$-tet series compounds are a homochiral pair. It seems that these factors play a role in the selection of the crystallization path, since the X-ray crystallographic studies show that the two polymorphs of the compound [trans-Co(2,3,2-tet) $\left.\left(\mathrm{NO}_{2}\right)_{2}\right] \mathrm{NO}_{3}$ crystallize as racemates with the two secondary nitrogens of each crystal structure as a heterochiral pair. Also, the two monodentate cyano ligands are decisive in the selection of racemate crystallization rather than conglomerate crystallization.

For the 3,2,3-tet series: $\left[\right.$ trans $\left.-\mathrm{Co}(3,2,3-\mathrm{tet})\left(\mathrm{NO}_{2}\right)_{2}\right] X$ and $[$ trans $-\mathrm{Co}(3,2,3-$ tet) $\left.\mathrm{Cl}_{2}\right] \mathrm{NO}_{3}$ all crystallize as conglomerates while [trans- $\mathrm{Co}(3,2,3-\mathrm{tet})$

TABLE X Selected bond lengths and bond angles for compound II, [trans-
$\mathrm{Co}(3,2,3-$ tet $\left.)(\mathrm{CN})_{2}\right] \mathrm{Cl} \cdot \mathrm{H}_{2} \mathrm{O}$

$\mathrm{Co}-\mathrm{N} 1$	1.985 (4)	$\mathrm{Cl}-\mathrm{H} 4$	0.87 (5)
$\mathrm{Co}-\mathrm{N} 2$	1.993 (3)	C2-C3	1.509 (8)
Co-N3	1.990 (4)	C2-H5	0.96 (5)
Co-N4	1.987 (3)	C2-H6	1.09 (5)
Co-C9	1.937 (4)	C3-H7	1.08 (4)
Co-C10	1.942 (4)	C3-H8	1.03 (6)
N1-C1	1.482 (6)	C4-C5	1.498 (8)
N1-H1	0.76 (4)	C4-H10	1.11 (4)
N1-H2	0.99 (6)	C4-H11	1.02 (6)
N2-C3	1.494 (6)	C5-H12	1.01 (5)
$\mathrm{N} 2-\mathrm{C} 4$	1.487 (6)	C5-H13	1.03 (6)
N2-H9	0.92 (5)	C6-C7	1.516 (7)
N3-C5	1.497 (6)	C6-H15	1.09 (5)
N3-C6	1.484 (6)	C6-H16	0.96 (5)
N3-H14	0.93 (4)	C7- C 8	1.509 (8)
N4-C8	1.491 (6)	C7-H17	0.95 (5)
N4-H21	0.87 (5)	C7-H18	0.96 (6)
N4-H22	0.90 (6)	C8-H19	1.05 (5)
N5-C9	1.145 (5)	C8-H20	1.28 (7)
N6-C10	1.137 (5)	O1W-H23	0.91 (11)
C1-C2	1.518 (8)	O1W-H24	0.82 (11)
$\mathrm{C} 1-\mathrm{H} 3$	1.12 (4)		
$\mathrm{N} 1-\mathrm{Co}-\mathrm{N} 2$	89.25 (16)	$\mathrm{Co}-\mathrm{N} 2-\mathrm{C} 4$	107.3 (3)
N1-Co-N3	175.00 (15)	C3-N2-C4	110.2 (4)
$\mathrm{N} 1-\mathrm{Co}-\mathrm{N} 4$	92.30 (18)	$\mathrm{Co}-\mathrm{N} 3-\mathrm{C} 5$	106.6 (3)
$\mathrm{N} 1-\mathrm{Co}-\mathrm{C} 9$	91.68 (17)	Co-N3-C6	119.4 (3)
$\mathrm{N} 1-\mathrm{Co}-\mathrm{Cl} 10$	87.85 (17)	C5-N3-C6	110.6 (4)
$\mathrm{N} 2-\mathrm{Co}-\mathrm{N} 3$	86.51 (15)	Co-N4-C8	119.5 (3)
$\mathrm{N} 2-\mathrm{Co}-\mathrm{N} 4$	177.49 (15)	N1-C1-C2	110.4 (4)
$\mathrm{N} 2-\mathrm{Co}-\mathrm{C} 9$	90.56 (15)	C1-C2-C3	113.6 (4)
$\mathrm{N} 2-\mathrm{Co}-\mathrm{Cl} 0$	90.79 (15)	$\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 2$	113.3 (4)
N3-Co-N4	92.03 (16)	N2-C4-C5	107.9 (4)
$\mathrm{N} 3-\mathrm{Co}-\mathrm{C} 9$	91.02 (16)	N3-C5-C4	107.1 (4)
N3-Co-C10	89.55 (16)	N3-C6-C7	112.1 (4)
N4- $\mathrm{Co}-\mathrm{C} 9$	87.43 (15)	C6-C7-C8	112.9 (4)
N4- $\mathrm{Co}-\mathrm{Cl0}$	91.24 (15)	N4-C8-C7	111.7 (4)
$\mathrm{C} 9-\mathrm{Co}-\mathrm{Cl} 0$	178.57 (17)	$\mathrm{Co}-\mathrm{C}-\mathrm{N} 5$	176.1 (4)
$\mathrm{Co}-\mathrm{N}-\mathrm{Cl}$	119.5 (3)	Co-C10-N6	179.0 (3)
Co-N2-C3	118.1 (3)	H23-O1W-H	(10)

$\left.(\mathrm{CN})_{2}\right] \mathrm{Cl}$ and $\left[\right.$ trans- $\mathrm{Co}(3,2,3-$ tet $\left.)(\mathrm{CN})_{2}\right]$ crystallize as racemates. The conformations of the 3,2,3-tet amine ligand for all of the above compounds are the same, but the trans-dinitro and trans-dichloro compounds crystallize as conglomerates, while trans-dicyano compounds crystallize as racemates suggesting that the homochiral amine ligand is not the only factor influencing the outcome. If this is not the only factor that controls conglomerate crystallization the two trans monodentate ligands must also play a role in the selection of the crystallization pathway.

TABLE XI Selected bond lengths and bond angles for compound III, [trans-$\mathrm{Co}(3,2,3$-tet $\left.)-(\mathrm{CN})_{2}\right] \mathrm{Br} \cdot \mathrm{H}_{2} \mathrm{O}$

$\mathrm{Co}-\mathrm{N} 1$	1.979 (15)	N3-C6	1.453 (25)
$\mathrm{Co}-\mathrm{N} 2$	2.000 (13)	N4-C8	1.471 (25)
$\mathrm{Co}-\mathrm{N} 3$	1.960 (15)	N5-C9	1.149 (21)
$\mathrm{Co}-\mathrm{N} 4$	1.997 (13)	N6-C10	1.151 (21)
Co-C9	1.923 (16)	$\mathrm{C} 1-\mathrm{C} 2$	1.53 (3)
Co- Cl 10	1.943 (16)	C2-C3	1.50 (3)
N1-C1	1.44 (3)	C4-C5	1.47 (3)
N2-C3	1.46 (3)	C6-C7	1.55 (3)
N2-C4	1.47 (3)	C7-C8	1.47 (3)
N3-C5	1.497 (22)		
$\mathrm{N} 1-\mathrm{Co}-\mathrm{N} 2$	89.4 (6)	$\mathrm{Co}-\mathrm{N} 2-\mathrm{C} 4$	107.3 (10)
$\mathrm{N} 1-\mathrm{Co}-\mathrm{N} 3$	175.4 (5)	C3-N2-C4	111.2 (15)
$\mathrm{N} 1-\mathrm{Co}-\mathrm{N} 4$	91.9 (6)	$\mathrm{Co}-\mathrm{N} 3-\mathrm{C} 5$	106.8 (11)
$\mathrm{N} 1-\mathrm{Co}-\mathrm{C} 9$	89.0 (7)	Co-N3-C6	121.4 (12)
N1-Co-C10	90.5 (7)	C5-N3-C6	110.8 (14)
$\mathrm{N} 2-\mathrm{Co}-\mathrm{N} 3$	86.7 (6)	Co-N4-C8	119.0 (11)
$\mathrm{N} 2-\mathrm{Co}-\mathrm{N} 4$	177.4 (5)	$\mathrm{N} 1-\mathrm{Cl}-\mathrm{C} 2$	111.9 (16)
$\mathrm{N} 2-\mathrm{Co}-\mathrm{C} 9$	91.3 (6)	C1-C2-C3	115.2 (15)
N2-Co-C10	90.3 (6)	N2-C3-C2	114.9 (15)
N3-Co-N4	92.1 (6)	N2-C4-C5	108.8 (15)
$\mathrm{N} 3-\mathrm{Co}-\mathrm{C} 9$	88.7 (7)	N3-C5-C4	108.7 (15)
N3-Co-C10	92.0 (7)	N3-C6-C7	112.0 (15)
N4-Co-C9	90.9 (6)	C6-C7-C8	113.5 (15)
N4-Co-C10	87.4 (6)	N4-C8-C7	113.8 (16)
C9-Co-C10	178.2 (7)	$\mathrm{Co}-\mathrm{C}-\mathrm{N} 5$	178.8 (16)
$\mathrm{Co}-\mathrm{N} 1-\mathrm{Cl}$	121.0 (12)	$\mathrm{Co}-\mathrm{C} 10-\mathrm{N} 6$	177.1 (17)
$\mathrm{Co}-\mathrm{N} 2-\mathrm{C} 3$	118.2 (11)		

FIGURE 4 Molecular structure of compound IV, $\left.[\text { trans-Co(3, 2, 3-tet)(NCS) })_{2}\right] \mathrm{Cl}$.

FIGURE 5 Molecular structure of compound \mathbf{V}, $\left[\right.$ trans $-\mathrm{Co}(3,2,3$-tet $\left.)(\mathrm{NCS})_{2}\right]$ I.
TABLE XII Selected bond lengths and bond angles for compound IV, [trans-$\mathrm{Co}(3,2,3$-tet $)(\mathrm{NCS})_{2} \mathrm{Cl}$

$\mathrm{Co}-\mathrm{N} 1$	1.80 (5)	N2-C4	1.41 (7)
$\mathrm{Co}-\mathrm{N} 2$	2.00 (4)	N2-H9	0.96 (4)
$\mathrm{Co}-\mathrm{N} 3$	1.88 (5)	N3-C5	1.48 (8)
Co-N4	2.03 (6)	N3-C6	1.49 (7)
Co-N5	1.95 (5)	N4-C8	1.39 (8)
$\mathrm{Co}-\mathrm{N} 6$	2.06 (8)	N5-C9	1.19 (7)
S1-C9	1.59 (5)	N6-C10	1.22 (12)
S2-C101	1.70 (9)	C1-C2	1.48 (10)
$\mathrm{N} 1-\mathrm{Cl}$	1.46 (9)	C2-C3	1.42 (11)
N1-H1	0.97 (4)	C4- 55	1.55 (9)
N1-H2	0.96 (4)	C6-C7	1.45 (8)
N2-C3	1.42 (8)	C7-C8	1.35 (9)
$\mathrm{N} 1-\mathrm{Co}-\mathrm{N} 2$	89.5 (18)	C3-N2-C4	112 (5)
$\mathrm{N} 1-\mathrm{Co}-\mathrm{N} 3$	178.1 (20)	$\mathrm{Co}-\mathrm{N} 3-\mathrm{C} 5$	112 (4)
$\mathrm{N} 1-\mathrm{Co}-\mathrm{N} 4$	94.0 (22)	Co-N3-N6	129 (3)
$\mathrm{N} 1-\mathrm{Co}-\mathrm{N} 5$	88.0 (22)	$\mathrm{C} 5-\mathrm{N} 3-\mathrm{C} 6$	109 (4)
N - $\mathrm{Co}-\mathrm{N} 6$	99 (3)	$\mathrm{Co}-\mathrm{N} 4-\mathrm{C} 8$	126 (4)
$\mathrm{N} 2-\mathrm{Co}-\mathrm{N} 3$	88.9 (17)	$\mathrm{Co}-\mathrm{N} 5-\mathrm{C} 9$	159 (5)
$\mathrm{N} 2-\mathrm{Co}-\mathrm{N} 4$	176.2 (19)	$\mathrm{Co}-\mathrm{N} 6-\mathrm{Cl0}$	143 (7)
$\mathrm{N} 2-\mathrm{Co}-\mathrm{N} 5$	87.7 (19)	$\mathrm{N} 1-\mathrm{Cl}-\mathrm{C} 2$	111 (6)
$\mathrm{N} 2-\mathrm{Co}-\mathrm{N} 6$	96.0 (23)	$\mathrm{Cl}-\mathrm{C} 2-\mathrm{C} 3$	123 (7)
$\mathrm{N} 3-\mathrm{Co}-\mathrm{N} 4$	87.6 (21)	N2-C3-C2	112 (6)
$\mathrm{N} 3-\mathrm{Co}-\mathrm{N} 5$	90.8 (22)	N2-C4-C5	114 (5)
$\mathrm{N} 3-\mathrm{Co}-\mathrm{N} 6$	82 (3)	N3-C5-C4	104 (5)
N4-Co-N5	90.9 (22)	N3-C6-C7	113 (4)
$\mathrm{N} 4-\mathrm{Co}-\mathrm{N} 6$	84 (3)	C6-C7-C8	123 (6)
$\mathrm{N} 5-\mathrm{Co}-\mathrm{N} 6$	171 (3)	N4-C8-C7	117 (5)
$\mathrm{Co}-\mathrm{N} 1-\mathrm{Cl}$	132 (4)	S1-C9-N5	175 (5)
$\mathrm{Co}-\mathrm{N} 2-\mathrm{C} 3$	121 (3)	S2-C10-N6	168 (9)
$\mathrm{Co}-\mathrm{N} 2-\mathrm{C} 4$	103 (3)		

TABLE XIII Selected bond lengths and selected bond angles for compound \mathbf{V}, [trans-Co(3,2,3-tet)(NCS) $\left.)_{2}\right]$

$\mathrm{Co}-\mathrm{N} 1$	1.960 (21)	N4-C8	1.45 (3)
$\mathrm{Co}-\mathrm{N} 2$	1.971 (18)	N5-C9	1.17 (4)
$\mathrm{Co}-\mathrm{N} 3$	1.965 (22)	N6-C10	1.13 (3)
$\mathrm{Co}-\mathrm{N} 4$	1.947 (18)	$\mathrm{C} 1-\mathrm{C} 2$	1.47 (4)
$\mathrm{Co}-\mathrm{N} 5$	1.893 (21)	C2-C3	1.50 (5)
Co-N6	1.883 (19)	C4-C5	1.45 (4)
N1-C1	1.48 (4)	C6-C7	1.48 (4)
N2-C3	1.46 (3)	C7-C8	1.52 (4)
N2-C4	1.45 (4)	C9-S1	1.60 (3)
N3-C5	1.45 (4)	C10-S2	1.63 (3)
N3-C6	1.48 (3)		
$\mathrm{N} 1-\mathrm{Co}-\mathrm{N} 2$	90.7 (8)	C3-N2-C4	111.7 (20)
$\mathrm{N} 1-\mathrm{Co}-\mathrm{N} 3$	174.9 (8)	$\mathrm{Co}-\mathrm{N} 3-\mathrm{C} 5$	107.9 (17)
N1-Co-N4	91.8 (8)	Co-N3-C6	118.7 (16)
$\mathrm{N} 1-\mathrm{Co}-\mathrm{N} 5$	88.1 (9)	C5-N3-C6	113.9 (20)
$\mathrm{N} 1-\mathrm{Co}-\mathrm{N} 6$	91.4 (8)	Co-N4-C8	121.8 (15)
N2-Co-N3	85.8 (9)	Co-N5-C9	161.4 (19)
$\mathrm{N} 2-\mathrm{Co}-\mathrm{N} 4$	176.5 (8)	$\mathrm{Co}-\mathrm{N} 6-\mathrm{Cl0}$	167.0 (19)
$\mathrm{N} 2-\mathrm{Co}-\mathrm{N} 5$	91.6 (8)	N1-C1-C2	113.2 (21)
N2-Co-N6	89.3 (7)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	116.8 (22)
N3-Co-N4	91.9 (8)	N2-C3-C2	114.9 (20)
N3-Co-N5	88.3 (8)	N2-C4-C5	109.5 (23)
N3-Co-N6	92.3 (8)	N3-C5-C4	108.4 (24)
$\mathrm{N} 4-\mathrm{Co}-\mathrm{N} 5$	90.9 (8)	N3-C6-C7	114.1 (20)
$\mathrm{N} 4-\mathrm{Co}-\mathrm{N} 6$	88.2 (7)	C6-C7-C8	114.3 (24)
N5-Co-N6	178.9 (9)	N4-C8-C7	111.1 (19)
$\mathrm{Co}-\mathrm{N} 1-\mathrm{Cl}$	120.6 (15)	N5-C9-S1	174.5 (20)
$\mathrm{Co}-\mathrm{N} 2-\mathrm{C} 3$	120.2 (15)	N6-C10-S2	177.4 (22)
$\mathrm{Co}-\mathrm{N} 2-\mathrm{C} 4$	106.4 (14)		

The counter anion is very important in the control of conglomerate crystallization in some cis cobalt amine compounds, with a strong hydrogen bonding counter anion favoring racemic crystallization [1-3]. The previous results suggest that the counter anion is not uniquely important. While compounds with halide anions could crystallize as conglomerates, counter anions with strong hydrogen bonding ability such as NO_{3}^{-}and ClO_{4}^{-}also crystallize as conglomerates, which is not true in cis-dinitro and cis-oxalato compounds. In spite of these uncertainties, we think the counter anion is important in conglomerate crystallization because the crystal structure of the neutral complex [trans $-\mathrm{Ni}(3,2,3$-tet $)\left(\mathrm{NO}_{2}\right)_{2}$] [14], has almost the same configuration as the complex cation $\left[\text { trans- } \mathrm{Co}(3,2,3-\mathrm{tet})\left(\mathrm{NO}_{2}\right)_{2}\right]^{+}$but crystallizes as a racemate.

For the compounds reported earlier, homochirality at the secondary nitrogens (that is RR or SS instead of RS) or at the two chelating rings ($\delta \delta$ or $\lambda \lambda$ instead of $\delta \lambda$ or $\lambda \delta$) are often important in holding homochiral molecules together. However, for the trans 3,2,3-tet series of compounds, this factor is not as important as the effect of replacement of the two trans ligands; that is, for series of compounds [trans- $\mathrm{Co}(3,2,3-$ tet $\left.) X_{2}\right] Y$
conglomerates were obtained when $X=\mathrm{NO}_{2}^{-}$or Cl^{-}, while racemates were formed when $X=\mathrm{CN}^{-}$or NCS^{-}.

Acknowledgements

We thank the Robert A. Welch Foundation for support of these studies (Grant E-592 to IB). We also thank the Mexican American Studies Institute for generous support during 1998-1999. SSM thanks Alexandria University, Egypt for granting his leave of absence.

References

[1] I. Bernal, J. Cetrullo and J. Myrczek, Mater. Chem. Phys. 35, 290 (1993).
[2] I. Bernal, J. Cetrullo, J. H. Worrell and T. Li, Polyhedron 13, 463 (1994).
[3] I. Bernal, X. Xia and F. Somoza, In: "Fundamental Principles of Molecular Modeling" (Eds. W. Gans, A. Amman and J. C. A. Boeyenes) Plenum Press: New York, 1996, p. 223.
[4] I. Bernal and J. Cetrullo, Inorg. Chim. Acta 122, 213 (1986).
[5] O. Bortin, Acta Chem. Scand. A30, 657 (1976).
[6] E. C. Niederhoffer, R. Peascoe, P. R. Rudolf, A. Clearfield and A. E. Martell, Acta Crystallogr. Sect. C 42, 568 (1986).
[7] O. Bortin, Acta Chem. Scand. A30, 503 (1976).
[8] I. Grenthe and E. Nordin, Inorg. Chem. 18, 1109 (1979).
[9] I. Bernal, F. Somoza, Y. Chen and S. S. Massoud, J. Coord. Chem. 41, 207 (1997).
[10] I. Bernal, J. Cetrullo, J. Cai and S. S. Massoud, Struct. Chem. 6, 99 (1995).
[11] I. Bernal and F. Somoza, unpublished results.
[12] N. C. Payne, Inorg. Chem. 11, 1376 (1972).
[13] N. C. Payne, Inorg. Chem. 12, 1151 (1973).
[14] R. Wen, I. Bernal, F. Somoza, W. Li and F. R. Fronczeh, Inorg. Chim. Acta 282, 96 (1998).
[15] R. Wen, I. Bernal, F. Somoza, W. Li and F. R. Fronczek, Inorg. Chim. Acta 282, 96 (1998).
[16] I. Bernal, F. Somoza, Y. Chen and S. S. Massoud, J. Coord. Chem. 41, 233 (1997).
[17] R. B. Roof, "A Theoretical Extension of the Reduced Cell Concept in Crystallography", Report LA-4038, Los Alamos Scientific Laboratory, 1969.
[18] D. T. Cromer and J. T. Waber, "International Tables for X-ray Crystallography", The Kynoch Press, Birmingham, England, 1975; IV, Tables 2.2 .8 and 2.3.1, respectively, for the scattering factor curves and the anomalous dispersion values.
[19] The NRCVAX Crystal Structure System, A. C. Larson, F. L. Lee, Y. Le Page, M. Webster, J. P. Charland and E. J. Gabe, as adapted for PC use by Peter S. White, University of North Carolina, Chapel Hill, N.C., 27599-3290.
[20] I. Bernal, Inorg. Chim. Acta 96, 99 (1985).
[21] I. Bernal, Inorg. Chim. Acta 101, 175 (1985).
[22] I. Bernal and J. Cetrullo, Inorg. Chim. Acta 150, 75 (1988).
[23] I. Bernal, J. Cetrullo and S. Berhane, Struct. Chem. 1, 361 (1990).

[^0]: *Corresponding author. Fax: 713743 2709, e-mail: ibernal@uh.edu

[^1]: Biso is the mean of the principal axes of the thermal ellipsoid.

[^2]: Biso is the mean of the principal axes of the thermal ellipsoid.

[^3]: Biso is the mean of the principal axes of the thermal ellipsoid.

[^4]: Biso is the mean of the principal axes of the thermal ellipsoid.

